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where v = ẋ(t). By choosing t = s, where s is the
distance travelled by the particle, so ds2 = dx · dx, the
velocity v = dx/ds has speed v · v = 1. Then, Eq. (C8)
is identical to the equation of motion Eq. (C6).

Imagine the vector field passing through an initial sur-
face, labeled by coordinate s = 0 and proceeding on-
ward. Since each member of the family of subsequent
s = constant surfaces is perpendicular to v̂, we have
∇s(x) = C(x)v̂(x), where C is some function. However,

v̂ ·∇s =
∑

i

dxi

ds

∂

∂xi
s =

ds

ds
= 1,

so C = 1 and ∇s = v̂.
Then, Eq. (C7) may be written:

A0(x) ≡
∫ s(x)

0
dsL(x(s), v̂(s)) =

∫ s(x)

0
dsn(x(s)),

(C9)
where it is understood that x, v̂ depend not only upon
s, but also on two other coordinates, say ξ, η, laid out
upon the constant s surfaces. So, from (C9),

∇A0(x) = n(x(s))∇s = n(x(s))v̂(s). (C10)

This is the same as (C4), so Φ0 = A0.
Φ0 is called the optical path length. A light ray follows

the flow line of the fictitious particle we have been con-
sidering but, of course, it moves along that path with the
speed of light c/n. So, when a light ray moves through
the distance ds, that takes time dt=dsn/c. Thus, accord-
ing to Eq. (C9), the optical path length Φ0 is just the
integrated time that light takes to go from one place to
another, multiplied by c. (The “principle of least time,”
the idea that the actual path light takes between two
points is the path which takes the least time, is due to
Fermat in 1662.) As a consequence, all rays of light which
have the same phase at the surface s = 0 and travel to
the surface s have the same phase there. The surface of
constant s is called a “wave front.”

To complete the WKB approximation, we need to find
Φ1. Setting Φ1 = iΦI

1 in Eq. (C3), with use of (C4), we
have that

2nv̂ · ΦI
1 = 2n

d

ds
ΦI

1 = ∇ · (nv̂) =
d

ds
n + n∇ · v̂.

From the second and fourth terms of this equation,

ΦI
1(x) = lnn1/2(x) +

1
2

∫ s(x)

0
ds∇ · v̂(x(s)). (C11)

Thus, from Eqs.(C9),(C11), we obtain the WKB ap-
proximate solution of the wave equation:

U(x) = n−1/2(x)e−
1
2

R s(x)
0 ds∇·v̂(x(s))eik

R s(x)
0 dsn(x(s))

(C12)
Eq. (C12) is what shall be used in what follows. It

requires specifying an initial surface for s = 0. From

this, at any point x0 on this surface, the initial veocity
field v̂(x0) can be determined, since it is perpendicular
to the surface and of unit length. Then, one can solve
the dynamical equation (C6) to obtain the velocity field
elsewhere, and find the specific trajectories x(s,x0). This
allows calculation of the integrals in (C12), resulting in
the WKB solution U(x). If n(x0) = 1, this solution has
U(x0) = 1. If a solution with any other value U0(x0) on
the s = 0 surface is desired, it is U0(x0)U(x).

The last factor in Eq. (C12) is well known in optics,
as the eikonal or ray approximation. What has been
shown here is that it is justified as the WKB approximate
solution of the wave equation.

For our problem, of a point source at x = 0, we choose
the s = 0 surface to be spherical, of infinitesimal radius,
centered at x = 0. Therefore, the initial velocity em-
anates radially out from x = 0. We assume n = 1, for at
least a small volume around x = 0. Then, by Eq. (C6),
dv/dt = 0 so v̂(x) = r/r = r̂, where r is the radial vec-
tor. Since ∇ · r̂f(r) = r−2d2[r2f(r)]/dr2, with f = 1 we
get ∇ · v̂ = 2/r. The distance travelled from s = 0, along
the velocity field, is s = r. Putting this into Eq. (C12)
gives, in this volume,

U(x) =
1
r
eikr. (C13)

This satisfies the wave equation Eq. (C1), with a unit
point source at the origin.

APPENDIX D: REFLECTION FROM LENSES
AND MIRRORS

This subsection is a diversion from our main argument,
and may be skipped. It is here for logical completeness,
and to make some pedagogical points.

In applications to optical systems, light, initially in
vacuum, encounters an abrupt change of index of refrac-
tion, in the form of lenses or mirrors. The latter may
be accommodated by setting n = −∞ in the volume of
the mirror. This may be understood from the quantum
theory analogy, where n = −∞ turns the potential well
into an infinite potential barrier.

How good is the WKB approximation in this case? For
completely empty space, Eq. (C13) is the exact solution
of Eq. (C1). However, in non-empty space, there is an
obvious failure when two rays cross. In that case, from
(C4), ∇Φ0 ∼ v̂ would then have two possible values,
which is impossible.

1. Mirrors

This is what occurs at the surface of a mirror. For
example, for a plane mirror at z = 0, and an incoming
plane wave of wave number k and direction v̂ = ĵa + k̂b,
we know the solution of the wave equation. It is the sum
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of incident and reflected waves which vanishes at z = 0:

U ∼ eik(ay+bz) − eik(ay−bz) ∼ eikayeln sin kbz

∼ eikay+ln(kbz)−(kbz)2/6+...,

Obviously, the wave amplitude can no longer be described
by a single term of the form exp ikΦ, where Φ can be
expanded in inverse powers of k.

But, the resolution of this difficulty is apparent from
the example. It is to find the solution of the wave equa-
tion as the sum of WKB terms. After all, the wave equa-
tion is linear, so a sum of solutions is a solution.

For the case of a finite sized mirror, rays which don’t
hit the mirror can continue on their merry way. Those
incident rays Ui which do hit the mirror surface are used
to obtain the reflected solution Ur. That is, the solu-
tion is U = Ui + Ur, where Ur is to be constructed. This
requires, on the mirror surface, knowing Ur and the direc-
tion of the outgoing vector field v̂r. These are obtained
by requiring the wave equation to be satisfied through the
mirror surface, that is, by requiring U = 0 and ∇||U = 0
on the mirror surface.

The first condition implies Ur = −Ui at the surface.
The second condition implies

∇||U = ik[Ui∇||Φi + Ur∇||Φr] = ikUi[v̂i|| − v̂r||] = 0

(the last step uses the WKB approximation of Φ0 replac-
ing Φ, and (C4)). Thus, v̂r|| = v̂i||. Since v̂r is a unit
vector, this implies v̂r⊥ = −v̂i⊥. Thus, the law of reflec-
tion is obtained. This completes the specification of the
initial conditions for the reflected WKB solution, which
can now be constructed using (C12)

The reflected part of U is non-zero within the vol-
ume enclosed by the mirror surface and the outermost
reflected rays, and abruptly jumps to zero outside. More
will be said about this discontinuity at the end of this
Appendix.

2. Lenses

A similar situation prevails for a finite sized lens. The
WKB approximation’s rays travel past or through the
lens and beyond. However, even before the WKB solu-
tion breaks down (where the focused rays which emerge
from the lens eventually cross), something is missing.
Light reflects from glass. The single WKB solution does
not take that into account.

Accordingly, another solution Ur to represent the re-
flected light must be added. We shall only discuss how to
find the light which reflects from the entrance lens sur-
face: light also reflects from the exit lens surface, and
that light reflects off the entrance surface, etc: using the
method of our discussion, one could do these other cal-
culations if one chose.

Reflected energy means decreased refracted energy.
We shall take the refracted solution to be UR = AUi

within the lens, where 0 < A < 1 is real. Likewise, within
the lens, take v̂R to be identical to v̂, the (refracted) con-
tinuation through the lens of the incident solution. So,
we just need to determine A to complete the specification
of UR. In addition, we must find the initial conditions
for Ur and v̂r on the surface, to construct Ur elsewhere.

As with the case of a mirror, this information is sup-
plied by requiring the wave equation be satisfied. That
is, U and ∇U must be continuous across the lens sur-
face. The first condition implies Ui + Ur = UR on the
surface, i.e., Ur = −(1 − A)Ui. The second condition is
Uiik∇Φi + Urik∇Φr = URik∇ΦR on the surface. With
use of Eq. (C4), this gives

v̂r =
v̂i −Anv̂R

1−A
. (D1)

We can find A by taking the scalar product of (D1) with
itself. Since v̂i · v̂R = cos(θi − θR), where the angles
are those the incident and refracted rays make with the
normal to the surface at a point of the surface, we obtain

A =
2

n2 − 1
[n cos(θi − θR)− 1]. (D2)

Putting (D2) into (D1) and taking (D1)’s scalar product
with a unit vector parallel to the surface and in the plane
of v̂i and v̂R, results in the law of reflection:

sin θr =
sin θi −An sin θR

1−A
= sin θi

(using sin θi = n sin θR, Snell’s law). This completes the
specification of the initial conditions for the reflected and
refracted WKB solutions from the entrance surface of the
lens.

For normally incident light, θi = θR, it follows from
(D2) that A = 2/(n + 1): this is also the result given
by electromagnetic theory. Therefore, for n = 3/2, the
magnitude of the reflected light intensity is (1 − A)2 =
1/25. The intensity of reflected light at any other angle
is less than this 4% value. Because it is so small, it
shall be unnecessary to consider this reflected solution in
subsequent sections.

The purpose of this discussion was not just to show
that reflected light can be neglected in considering re-
fracted light through a lens. It was also to emphasize
that the sum of WKB solutions is a solution, and that it
can be accurate to use the WKB solution up to a surface,
and then consider another WKB solution as a continua-
tion of it. Both ideas shall be needed, because something
still is missing.

If the lens is backed by an screen containing an aper-
ture (the exit pupil), UR beyond the lens abruptly jumps
from its WKB value to zero at the edge of the “ray bun-
dle.” Since∇2UR is singular there, this cannot satisfy the
wave equation. There has to be a modified UR which
smooths out this abrupt transition. This brings us to
considerations of diffraction.


